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Abstract. Within an improved scission point model, experimental data on the relative yield, mean value
and variance of the total kinetic-energy distribution of fission fragments are described. It is shown that
for a fixed mass and charge fragmentation, the potential energy of the scission configuration has several
minima as a function of the deformation parameters of the fragments. The scission at these minima leads
to a relatively enhanced yield of the fragments with a certain TKE and creates fine structures in the
TKE-mass distribution which are different from those produced by the odd-even effect.

PACS. 24.75.+i General properties of fission – 21.60.Gx Cluster models

1 Introduction

A static analysis based on the potential energy surface
is useful for describing various characteristics of fission.
The mass, charge and kinetic-energy distributions of fis-
sion fragments are well described within the scission point
model where a potential energy is calculated for a partic-
ular scission point configuration of two nearly touching
coaxial nuclei [1]. Since ref. [1] was published, new exper-
imental information [2–13] appeared on the mean total
kinetic energy 〈TKE〉 of the fission fragments as a func-
tion of their mass numbers. For example, the 〈TKE〉 and
its variance were measured for specific combinations of
fission fragments in spontaneous fission of 252Cf [9]. One
of the interesting experimental data of the last years is
the observation of fine structures in the TKE-mass dis-
tribution of fission fragments [14]. It was found that the
TKE-mass distribution shows a smooth shape with small
local peaks which are different from those produced by
proton odd-even staggering. The method for revealing the
fine structure is based on the difference between the orig-
inal and smoothed experimental TKE-mass distributions.
The first attempt to explain the fine structures was made
in [15] within a cluster approach in which specific ruptures
of a clustered neck create the peculiarities of the observed
fine structures.

a e-mail: antonenk@thsun1.jinr.ru

In this paper we aim to describe new experimental fis-
sion data within an improved scission point model. As in
ref. [1], we interpret the scission configuration as a dinu-
clear system (DNS) with the two fission fragments in con-
tact. The DNS model has the advantage that the mass and
charge asymmetries between the fragments are explicitly
treated as collective degrees of freedom. A similar model
was used in refs. [16,17] to derive the mass distribution in
fission. Here, we want to explain the fine structures and
total kinetic energies in fission in their dependence on the
deformation of the fragments.

The potential energy of the DNS with fixed mass and
charge numbers of the nuclei is calculated with respect to
their deformation parameters in sect. 2. The proper calcu-
lation of the interaction between the fragments and of the
deformation energies let us avoid the uncertainties in the
choice of the internuclear distance and excitation energy in
the scission configuration as it was the case in ref. [1]. The
potential energy of the scission configuration as a func-
tion of deformations of the fragments has several minima.
The scission at these minima produces local maxima in
the TKE-mass distribution of fission fragments (sects. 3
and 4.1). We analyse in sect. 4.2 whether these maxima
correlate with the observed fine structure in the neutron-
induced fission 233U(nth, f). The calculated 〈TKE〉 and
variance of TKE in fission of 234,236U, 240Pu and 252Cf,
and the relative yields of fission fragments of 252Cf are
compared with the experimental data in sect. 4.3. A sum-
mary is given in sect. 5.



52 The European Physical Journal A

2 Potential energy of scission configuration

The fissioning nucleus with mass A and charge Z can
be described at the scission point with the DNS model.
Therefore, typical characteristics of the DNS as the excita-
tion energy, the charge (ZL, ZH) and mass (AL, AH) num-
bers, and the deformation parameters (βL, βH) of light (L)
and heavy (H) nuclei, respectively, determine the mass,
charge and kinetic-energy distributions of the fission frag-
ments. We treat the fragment pairs as nearly touching,
coaxial prolate ellipsoids. The deformation parameters βi
are defined as the ratios of the semimajor (ci) and semimi-
nor (ai) axes of the ellipsoids, i = L or H. The volume
conservation is taken into account. Since in the fission of
actinides the saddle point configuration of the fission frag-
ments corresponds to quite large deformations, the used
shape parametrization is suitable up to βi ≈ 2.1. The
quadrupole moment of an ellipsoid with β = 2.1 is equal
to the quadrupole moment of a nucleus with a quadrupole
deformation parameter of 0.65 if one uses the expansion
of the nuclear surface in spherical functions.
Since we deal with a static description of fission, the

crucial point of the model is the calculation of the poten-
tial energy. This energy is the sum of the liquid-drop (U i

LD)
and microscopic shell correction (δU i

sh) energies for each
DNS nucleus and the Coulomb (VC) and nuclear (VN) po-
tential terms describing the interaction between the DNS
nuclei,

U({Ai, Zi, βi}, R,E∗) = UL
LD(AL, ZL, βL)

+UH
LD(AH , ZH , βH) + δUL

sh(AL, ZL, βL, E
∗)

+δUH
sh(AH , ZH , βH , E

∗) + VC({Ai, Zi, βi}, R)
+VN({Ai, Zi, βi}, R). (1)

Here, AH = A−AL, ZH = Z−ZL, and E∗ is the excitation
energy of the pre-scission configuration. The Coulomb po-
tential VC is calculated with the method given in ref. [18].
The calculation of VN is done in the double-folding form
described in ref. [19]. The decaying DNS starting at the
touching distance Rm ≈ cL + cH + 0.5 fm has to over-
come a small potential barrier ∆V = U(Rb) − U(Rm) at
Rb ≈ cL+cH+1.5 fm [19,20] which results from the sum of
the attractive nuclear and repulsive Coulomb potentials.
This barrier keeps the DNS nuclei in contact for some time
and allows the DNS nuclei to take statistical distributions
in the space (βL, βH). The value of ∆V in the consid-
ered DNS is less than 3 MeV and depends on the mass
(charge) splitting in fission and on the deformations of
the fragments. Since with the used shape parametrization
of the DNS nuclei the value of ∆V becomes very small at
large deformations of the nuclei, we restrict our treatment
to that intervals of βL and βH where ∆V > 0. Indeed,
configurations without a potential barrier, which prevents
the immediate DNS decay, play no role because the DNS
decays with large probability before reaching this configu-
ration. We do not consider βL and βH larger than 2.1 since
the development of very large deformations needs time for
which the statistical assumptions used in this paper are
not valid. It is necessary to stress that in comparison to

ref. [1] our model allows us to define the internuclear dis-
tance strictly in the scission configuration.

2.1 Liquid-drop energy with variable surface tension

The liquid-drop energy and shell corrections are calcu-
lated with the two-center shell model [21] the parameters
of which are chosen to have the best fit of the experi-
mental binding energies of the separate nuclei. We mod-
ified the calculation with the two-center shell model by
a deformation-dependent surface tension and separately
calculated the energy of each fragment. The liquid-drop
energy U i

LD = Ei
C + Ei

s (i = L or H) of the nucleus “i”
consists of the Coulomb Ei

C and surface energy E
i
s terms.

The last one is proportional to the area Si of nuclear sur-
face

Ei
s = σiS

i , (2)

where σi is the surface tension coefficient. With a con-
stant surface tension σi = σ0i the calculated moment of
inertia of a fissioning nucleus is larger than the experimen-
tal one. This indicates a smaller deformation of the real
nucleus at the saddle point than one obtains with a con-
stant σ0i [22,23]. To avoid this drawback, we propose to
use a deformation-dependent σi(β) in contrast to the pro-
cedure done in the model of ref. [1]. This effectively takes
the change of the nuclear surface with deformation into
account. The corrections to the surface energy which arise
from the change of the curvature of the surface and from
effects caused by the finite compressibility of nuclear mat-
ter were treated in the droplet model [22]. These effects
are automatically included in the model if finite-range nu-
clear forces are used for calculating Es [24].
In order to remain within the liquid-drop model, we

introduce a dependence of σi on β in a simple way,

σi(β) = σ0i(1 + ki(β − βgs)2) , (3)

where σ0i = 0.9517(1–1.7826((Ni−Zi)/Ai)
2) as in ref. [21]

with Ni = Ai − Zi. Thus, near the ground state with
the deformation βgs the parameters of the usual liquid-
drop model are not changed. However, for large deforma-
tions the surface tension increases if ki > 0. The value
ki = 0.002 corresponds to the value Γ = −0.1 suggested
in ref. [23] to take the deformation of a diffuse matter layer
around the nucleus into account. However, with ki = 0.002
a DNS consisting of magic nuclei would have unrealisti-
cally large deformation at the scission point which yields
a too small TKE in comparison with the experiment. In
contrast to non-magic nuclei, the deviation of magic nuclei
in the deformation from their ground states creates larger
changes in the shell structure and, thus, in the diffuse-
ness. A large increase of the diffuseness with deformation
in magic nuclei leads to a sharp decrease of the binding
energy. The influence of this effect can be taken care of by
using a larger ki = (0.01–0.05) for magic nuclei. Therefore,
we propose to insert in (3)

ki =
0.06

1 + exp[−0.063(Cvib(Zi, Ni)− 67)]
, (4)



A.V. Andreev et al.: Possible explanation of fine structures in mass-energy distribution of fission fragments 53

where Cvib is the stiffness of the nucleus with respect to
the quadrupole deformation. Large Cvib for magic nuclei
results in larger values of ki. The stiffness parameter is
determined as [25]

Cvib(Zi, Ni) =
~ωivib(3ZiR

2
0i/(4π))

2

2B(E2)ivib

, (5)

where R0i = 1.15A
1/3
i fm and B(E2)ivib ≈ Ei

2+B(E2)irot/

(~ωivib). Since not in all nuclei the first 2
+ state is of vibra-

tional nature, we assume the 2+ states presented in [26]

as vibrational ones if B(E2)i < 0.55 e2b2. If B(E2)i ≥
0.55 e2b2, the 2+ states given in ref. [26] are considered
as rotational ones. In this case the vibration energy can
be estimated as ~ωivib = Ei

2+B(E2)i/0.55 with Ei
2+ as the

energy of the first 2+ state. For known vibrational states
in nuclei with ~ωivib > Ei

2+ , this estimation is quite good.
With (4) the constants ki deviate much from 0.002 only

for nearly magic nuclei and allow us to avoid the shift of
the minima of the DNS potential energy to large defor-
mations of these nuclei. Thus, values of ki = (0.01–0.05)
are suitable for such magic or nearly magic nuclei like
126,130,132Sn, 132,134,136Te and 138,140Xe which occur in
the DNS considered in this paper. These values change
the values of σi with respect to σ0i less than 0.25% for the
deformations corresponding to the minima of the poten-
tial energy of the scission configuration as a function of
βL and βH . For non-magic nuclei, the change of σi with
β is negligible.

2.2 Shell corrections

With the two-center shell model [21] one can obtain the
microscopic shell correction δUsh = δUL

sh + δUH
sh for the

dinuclear system at zero excitation energy. This model
allows us to find the shell correction δU i

sh for separate
fragment as well when we consider the DNS consisting
of two identical nuclei, δU i

sh = δUsh/2. We found that
the difference between δUsh obtained by two methods
does not exceed 1 MeV that is within the inaccuracy of
our calculation. Note that the present calculations are
justified for the range β < 2.1 which is suitable for the
used shape parametrization.
The calculated δU i

sh(Ai, Zi, βi, E
∗ = 0) are in good

agreement with the results presented in refs. [24,27]. Fig-
ure 1 shows the quantities EC, Es, δU

i
sh and U as func-

tions of the deformation parameter at E∗ = 0 MeV for
102Zr, 108Mo and 132Sn. At the deepest minima of U
the deformations of the nuclei are consistent with the
quadrupole moments following from the calculations [24]
or from the experiment [26]. For 102Zr, refs. [24] and [27]
give δUsh = 1.89 and 3.2 MeV, β = 1.36 and 1.37, re-
spectively. For 108Mo, refs. [24] and [27] give δUsh = 2.01
and 3.71 MeV, β = 1.33 and 1.33, respectively. For 132Sn,
refs. [24,27] give δUsh = −12.61 and −11.55 MeV, respec-
tively. Reference [26] gives only the values β = 1.43, 1.38
and 1 for the nuclei 102Zr, 108Mo and 132Sn, respectively.
The odd multipoles are not included in our calcu-

lations. While in ref. [24] only even multipoles were
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Fig. 1. The dependence of the surface (dotted lines), Coulomb
(dashed lines) energies, shell corrections (dot-dashed lines) and
total potential energies (solid lines) of 102Zr, 108Mo and 132Sn
on the deformation parameter. The surface, Coulomb and total
energies are referred to their values for spherical nucleus.

considered, the octupole deformations were incorporated
in ref. [27]. For the nuclei presented in fig. 1, β3 = 0 in
accordance with ref. [27]. For 146Ba in the ground state,
ref. [27] predicts β = 1.199 (in our notation), β3 = −0.107
and δUsh = −0.02 MeV, ref. [24] predicts β = 1.19
and δUsh = −0.72 MeV, and the experiment gives
β = 1.22 [26]. Our calculation leads to δUsh = −1.3 MeV
and β = 1.22 that allows us to conclude about good
agreement of our results with the calculations of ref. [27]
even in the case of β3 6= 0 in [27]. With the account of
β3 the quadrupole deformation in the ground state is
slightly different from the one obtained in the case of
β3 = 0. The octupole deformation changes δUsh within
1–1.3 MeV that is quite small for our purposes.
In order to include the dependence of the shell correc-

tion on excitation energy E∗, the following phenomeno-
logical expression is widely used:

δU i
sh(Ai, Zi, βi, E

∗) =

δU i
sh(Ai, Zi, βi, E

∗ = 0) exp[−E∗

i /ED], (6)

where the damping constant ED = 18.5 MeV [28]. Since
the extraction of excitation energies E∗

i of the fission frag-
ments from the experimental data is only known for few
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Fig. 2. Potential energies of the scission configuration (R =
Rb(βL, βH)) as functions of βL and βH for the fission 234U →
90Kr+144Ba at the excitation energies E∗ = 0, 30 and 60 MeV.
The potential energy is set zero at βL = βH = 1.

splittings [9], we assume for simplicity E∗

i = AiE
∗/(AL+

AH). We found for the considered excitation energies that
our final results are not sensitive to a reasonable variation
of ED within the interval 15–25 MeV as well as to the as-
sumption on the sharing of excitation energy between the
fragments. The dependence of the potential energy as a
function of βL and βH on the excitation energy is shown
in fig. 2. While the potential energy surface has few min-
ima for small E∗, the number of minima decreases with
increasing E∗. At E∗ = 60 MeV, the liquid-drop limit is
reached. Since in neutron-induced and spontaneous fission
the excitation energy of scission configuration does not
exceed about 30 MeV, the shell effects play an important
role in the formation of the TKE-mass distribution of fis-
sion fragments. If the fissioning system reaches the scission
configuration, which we assume as a DNS configuration,
its probability is distributed in the space of deformation
parameters in accordance with the potential energy sur-
face, i.e., the scission occurs with some probability at each
βL and βH for a fixed mass or charge splitting.

2.3 Discussion of shape parametrization

For the ellipsoid with deformation parameter β, the charge
quadrupole Q2 and hexadecupole Q4 moments are [18]

Q2 =
2Ze

5
R2

0

β2 − 1
β2/3

,

Q4 =
9Ze

70
√
π
R4

0

(β2 − 1)2
β4/3

, (7)

where R0 is the radius of the equivalent spherical nucleus.
If one uses the multipole expansion of the nuclear surface
R = R0(1 − (β2

2 + β2
4)/(4π) + β2Y20(θ) + β4Y40(θ)) with

the parameters of quadrupole (β2) and hexadecupole (β4)
deformations, Q2 and Q4 are calculated as follows [18]:

Q2 ≈
3Ze√
5π

R2
0β2(1 + 0.36β2 + 0.967β4),

Q4 ≈
3Ze

4π
R4

0(β4 + 0.725β
2
2 + 0.983β2β4). (8)

Equating the corresponding moments in eq. (7) and
eq. (8), one can find the relationship between β2 and
β4, and β. For example, the ellipsoid with β = 1.2 has
quadrupole and hexadecupole moments corresponding to
β2 = 0.19 and β4 = 0.02. Near the ground states corre-
sponding to small β < 1.3 the used ellipsoid nuclear shape
cannot accommodate higher-even-multipole deformations
βλ (λ ≥ 4). The absolute value of β4 strongly increases
with β. The most probable deformations βL = 1.7 and
βH = 1.6 at scission in the fission of

252Cf into 106Mo and
146Ba with emission of (3–4) neutrons (see sect. 4.1) cor-
respond to β2 = 0.50, β4 = 0.24 and β2 = 0.45, β4 = 0.17,
respectively, for the multipole expansions of nuclear sur-
faces. The TKE calculated with these (β2, β4)-shapes is
about 1 MeV smaller than the TKE calculated with the
ellipsoid shapes in the present paper. Since for large β,
in which we are mainly interested in the fission accom-
panied by the neutron evaporation, the higher even mul-
tipoles (λ ≥ 4) are effectively in our consideration, the
difference between the TKE calculated with other shape
parametrizations becomes small. In the present paper we
consider also several cases with small β but for the nu-
clei which are not expected to have the deformations of
higher multipoles, for example, 126,132Sn. Therefore, the
used ellipsoid shapes are quite suitable for the schematic
calculations of fission events considered in the paper and
for the analysis of reasons responsible for the fine struc-
tures in the TKE-mass distribution. Note that the ellip-
soid shapes are consistent with the calculations of δUsh

within the two-center shell model.
While the present model is applicable to the descrip-

tion of fission events which are mainly characterized by
quite large deformations of the fragments at scission, it
is not yet adopted for the description of the cold fis-
sion in which the fragments at scission are nearly their
ground states and some of the fragments are expected to
be hexadecupole-deformed according to the macroscopic-
microscopic calculations [27]. In the cold-fission splitting
252Cf → 106Mo + 146Ba, βL ≈ 1.4 (β2 = 0.361) and
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〈TKE〉({Ai, Zi}) =

∫

TKE({Ai, Zi, βi}) exp[−U({Ai, Zi, βi}, Rb, E
∗)/T ]dβLdβH

∫

exp[−U({Ai, Zi, βi}, Rb, E∗)/T ]dβLdβH

(11)

βH ≈ 1.23 (β2 = 0.22) [27], and the present model over-
estimates the TKE by 4.5 MeV due to the lack of suit-
able hexadecupole deformation (β4 = 0.1) in the ellipsoid
parametrization of 146Ba.

3 Total kinetic energy of fission fragments

At fixed mass and charge splittings {Ai, Zi} the total ki-
netic energy of the fission fragments is defined as

TKE({Ai, Zi, βi}) = VC({Ai, Zi, βi}, Rb)

+VN({Ai, Zi, βi}, Rb) . (9)

The excitation energy of the scission configuration is re-
lated to the Q-value as follows:

E∗({Ai, Zi, βi}, Rb) = Q− TKE({Ai, Zi, β
gs
i }) + S

−{U({Ai, Zi, βi}, Rb, E
∗)

−U({Ai, Zi, β
gs
i }, Rb, E

∗)} , (10)

where S = Sn ≈ 8 MeV is the excitation energy coming
from the thermal neutron in the neutron-induced fission.
In spontaneous fission S is zero. In photofission S is
equal to the energy of gamma quanta. The deformation
parameters βgs

L and βgs
H are related to the ground states

of the nuclei and calculated for separate nuclei. The
difference of the total energy of the excited system with
respect to the energy of the system with the nuclei in
their ground states consists of the difference of the TKE
and of the energy of deformation.
Since the potential energy depends on E∗, the excita-

tion energy is calculated with (10) by using an iteration
procedure. First, U is defined with E∗ = 0 MeV and a new
value of E∗ is found from (10). Then, with this E∗ we cal-
culate the potential energy U which leads to a new value of
E∗. As we checked, these two steps supply a nice accuracy
for finding E∗ because we deal with excitation energies at
which the damping of the shell effects is rather small.
In the scission point model within statistical assump-

tion the mean total kinetic energies for fixed {Ai, Zi} are
calculated as

see eq. (11) above.

Here, the scission configuration is assumed in the ther-
modynamic equilibrium, with a certain distribution in
βL and βH . For fixed Ai and Zi, the excitation energy
E∗ is defined by the deepest minimum of the poten-
tial energy as a function of βL and βH with 1 ≤ βL,
βH ≤ 2.1. The corresponding effective temperature is
T =

√

12E∗/(AL +AH). It should be noted that in our
model the temperature is not a free parameter as in ref. [1],
but obtained from the excitation energy of the internal de-
grees of freedom.
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Fig. 3. Potential energies of scission configurations (R =
Rb(βL, βH)) as functions of βL and βH for the indicated
neutron-induced fission fragmentations.

In order to avoid cumbersome calculations, we search
for Zi = Zm

i for fixed Ai at which the potential en-
ergy is minimal and, thus, the fission yield for {Ai, Zi}
is maximal. The found most probable charge num-
bers Zm

i for each Ai are in a good agreement with
the experimental data. Indeed, for fixed Ai the dis-
tribution of fission fragments in Zi is very narrow.
For the considered excitations of the scission config-
urations, the TKE is assumed to be approximately:
〈TKE〉({Ai}) ≈ 〈TKE〉({Ai, Zi = Zm

i }). The vari-
ance of TKE, σ2

TKE({Ai}) = 〈[TKE({Ai, Zi, βi}) −
〈TKE〉({Ai})]2〉, is the result of the same average over
βL and βH as in (11). Again we assume σ2

TKE({Ai}) ≈
σ2

TKE({Ai, Z
m
i }).
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4 Results of calculations and discussion

4.1 Minima of potential energy with respect to βL and
βH

The potential energies of scission configurations as func-
tions of βL and βH are presented in figs. 3–5 for the split-
tings 240Pu → 90Kr + 150Ce, 102Zr + 138Xe and 106Mo +
134Te, 252Cf → 106Mo+146Ba and 258Fm→ 126Sn+132Sn.
The calculations are shown for the parameters of defor-
mations smaller than 2.1 up to which the used shape
parametrization is suitable. One can see several minima in
the potential U . The number of minima becomes smaller
for more symmetric splittings. For example, in the case of
252Cf → 106Mo+ 146Ba there is only one minimum in the
considered interval of βL and βH (fig. 5). With the used
shape parametrization one obtains a second minimum at
larger βH = 2.2 as well. However, the DNS, which is al-
ready unstable with respect to the decay for smaller βH ,
reaches this minimum with very small probability. Perhaps
this explains the negligible role of the second mode in the
fission of 252Cf which corresponds to small TKE [9]. In the
fission splitting 240Pu→ 102Zr + 138Xe, the potential has
three minima at βL ≈ 1.75 which are close to each other.

4.2 Fine structure of the TKE-mass distribution

Besides βL and βH , the DNSs associated with the scis-
sion configurations are characterized by the mass and
charge asymmetry coordinates supplying different mass
and charge fragmentations in fission. If we consider the
DNS potential energy as a function of AL (or AH), βL and
βH , the potential energy surface depends on three coordi-
nates. In the previous subsection we showed that there are
several minima of the DNS potential energy as a function
of βL and βH for fixed AL and AH . The deformations βL
and βH of the fragments at these minima have almost the
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Fig. 5. The same as in fig. 3, but for the indicated spontaneous
fission reactions.

same values for neighboring AL. Therefore, in the three-
dimensional space (βL, βH , AL) the minima of the poten-
tial energy with respect to βL and βH are aligned with
several lines almost perpendicular to the plane (βL, βH).
Due to the existence of these minima and the relatively
enhanced yield of fission in R from them, the formation
of the fine structures of the TKE-mass distribution of the
fission fragments is possible. Since the minima in βL and
βH are rather shallow and appear also in the neighboring
charge splittings at fixed AL, one would not observe well-
distinguished peaks in the TKE-mass distribution in the
experiment. If only one minimum existed with respect to
βL and βH at each AL on the potential energy surface,
the TKE-mass distribution of the fission fragments would
have no the fine structures.

We calculated the TKE as a function of AL in the fis-
sion of 234U at each minimum in βL and βH and show
the result as a function of AL in fig. 6. For each AL, we
have points which correspond to pairs of fragments with
the values of βL and βH at the minima in the consid-
ered interval of deformation parameters. One can see from
the connections of the calculated points by straight lines
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Fig. 6. Comparison of calculated and experimental fine
structures in the TKE-mass distribution of neutron-induced
fission of 234U. At each AL, the solid and open symbols
denote the TKE of scission configurations at the minima
of the potential energy as functions of βL and βH . Solid
circles correspond to configurations with smallest βL and βH

among all minima. Open squares correspond to configurations
with largest βL and βH among all minima (βL, βH ≤ 2.1).
TKEs of scission configurations with smallest βL-largest βH ,
smallest βL-medium βH , largest βL-medium βH and largest
βL-smallest βH are shown by open circles, open triangles,
solid triangles and solid squares, respectively. The lines are
given to guide the eye. The experimentally observed fine
structures [14] are presented in arbitrary units.

in fig. 6 that on the plane (TKE,AL) several curves are
formed along which the yield of fission products should be
relatively enhanced. These curves correlate with the ex-
perimental enlarged yields [14] which produce fine struc-
tures of the TKE-mass distribution. These structures are
different from those produced by the odd-even effect. In-
deed, the method for analysing the fine structure in the
experimental data is based on the specific subtraction of
a smooth distribution from the measured one [14]. The
present calculation maintains the correlation with the ex-
periment but we cannot conclude whether the presence
of the potential energy minima in the (βL, βH)-plane is
the only reason for the observed fine structure. Other ef-
fects like the formation of complicated cluster configura-
tions [15] may contribute to the fine structure as well.

In fig. 7 we predict the fine structures in the TKE-mass
distribution of fission fragments of 240Pu. These structures
are more complicated for 88 ≤ AL ≤ 102. For AL ≥ 104,
there is only one minimum of the potential energy as a
function of βL and βH at fixed AL.
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Fig. 7. The same as in fig. 6, but for the calculated fine struc-
tures in neutron-induced fission of 240Pu.

Table 1. Comparison of experimental (exp) [7,12,13] and cal-
culated (th) mean TKE of pairs of fission fragments.

Fragmentation 〈TKE〉exp 〈TKE〉th
(MeV) (MeV)

232Th → 98Sr + 134Te 168 174
232Th → 88Se + 144Ba 158 153.5

232Th → 114Ru + 118Pd 153 159
250Cf → 74Zn + 176Er 159 164.5
250Cf → 80Ge + 170Dy 164 169
250Cf → 88Kr + 162Sm 170.5 177.5
252Cf → 124Cd + 128Sn 192 198
252Cf → 74Ni + 178Yb 159

258Fm → 126Sn + 132Sn 230 229
258Fm → 126Cd + 132Te 205 198
258No → 126Cd + 132Xe 204 200.5

4.3 Mean TKE, variance of TKE and relative yields of
fission fragments

The experimentally determined fission fragments are those
after neutron evaporation. The calculated quantities, how-
ever, are the primary mass and energy distributions of the
fission fragments before prompt neutron emission. In order
to reconstruct the pre-neutron yield, a Monte Carlo sim-
ulation is used [3]. The emission of one neutron changes
the kinetic energy by about 1 MeV [7]. Since for 234U,
240Pu and 250Cf the pre-neutron yields are not presented
in refs. [2,5,7], we added the difference between the pre-
and post-neutron TKE at the same AL, presented for
236U fission in ref. [3], to the measured post-neutron TKE.
Thus, the TKEs of primary fission fragments are 1–3 MeV
larger than those after neutron emission and these values
are compared with our calculated results.
The success of our model in describing 〈TKE〉 is

demonstrated in fig. 8 for the neutron-induced fission of
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Table 2. Comparison of experimental (exp) [9] and calculated (th) mean TKE, variances of TKE and relative yields (Y ) for
different pairs of fragments in spontaneous fission of 252Cf.

Fragmentation 〈TKE〉exp σ2
〈TKE〉th

〈TKE〉th σ2
〈TKE〉exp

Yexp Yth

(MeV) (MeV2) (MeV) (MeV2)
102Zr + 150Ce 183.3(3) 106 179.3 99(9) 0.21 0.18
106Mo + 146Ba 189.3(1) 89 190 89.5(4) 0.44 0.54
112Ru + 140Xe 193.3(3) 90 194.8 95(7) 0.25 0.21
118Pd + 134Te 200 65 198 0.1 0.06
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Fig. 8. Calculated and experimental [2–5] mean 〈TKE〉({Ai})
as a function of AL for neutron-induced fission of 234,236U and
240Pu. The shown points are connected by lines to guide the
eye. For fixed AL, the most probable charge splitting was found
by minimization of the total energy with respect to ZL.

234,236U and 240Pu. The agreement of the calculated re-
sults and the available experimental data is within 5 MeV.
A comparison of calculated and experimental values of
〈TKE〉({Ai, Zi}) is listed in tables 1 and 2 for photofis-
sion of 232Th, neutron-induced fission of 250Cf, and spon-
taneous fission of 252Cf, 256No and 258Fm. The agree-

ment of theory with the experiment is quite good. For
252Cf spontaneous fission, the variances of TKE listed
in table 2 are well described. The experimental uncer-
tainties are larger for rare asymmetric fission events. For
example, ref. [7] gives 〈TKE〉 ≈ 153 MeV and ref. [29]
gives 〈TKE〉 ≈ 159 MeV for the same fragmentation
AL/AH = 74/176 in the fission of 250Cf. A larger devi-
ation of the calculated 〈TKE〉 from the experimental data
for asymmetric fission splitting could also indicate the ne-
cessity of a dynamical treatment of the decay out of the
asymmetric DNS instead of the statistical approach used
in the present paper. The same fission mass splitting of
258Fm with different ZL leads to quite different values of
〈TKE〉 that is possible to check in the experiment.
In order to calculate the relative yields within the sta-

tistical treatment [1], we use the potential energies of each
configuration at the corresponding deepest minimum in
the potential energy surface in the (βL, βH)-plane. In ta-
ble 2 the calculated and experimental relative yields Y
are in a good agreement for the indicated fragments of
spontaneous fission of 252Cf. The calculated ratio between
the yields of pairs 106Mo+146Ba and 74Ni+178Yb is about
1 : 10−5, where the splitting 106Mo+146Ba has the maxi-
mal yield of fission fragments of 252Cf. For the fission of
240Pu, we obtained 0.37 : 0.63 for the ratio of mass yield
of the fission mode ST1 with AH = 134 to the one of
the fission mode ST2 with AH = 140 that is consistent
with the experimental ratio 0.264 : 0.736 [6]. However,
the experimental ratio 200 : 1 [4] between the yields of
asymmetric and symmetric fissions of 236U is not repro-
duced in our calculation which gives a ratio 200 : 7. As
was mentioned in ref. [1], this difference could be created
by the uncertainties in the calculation of shell corrections.
The shell correction method is not expected to be more
accurate than 0.5–1 MeV. This could create a quantitative
disagreement in some cases.
For the calculations of 〈TKE〉 and σ2

TKE, we assumed
the thermodynamic equilibrium in the DNS with effec-
tive temperature T . The partition of the excitation en-
ergy E∗

L/E
∗

H = AL/AH between the fragments at scission
point is used to take into account the damping of the
shell correction with excitation. The excitation energies
of the fragments at scission and at the asymptotic differ
by the deformation energies of the fragments at scission.
The total excitation energy of the scission configuration
is small when one of the fragments is magic nucleus. A
sawtooth structure for the neutrons emitted as a function
of fragment mass is reproduced well in the scission point
models, for example, in ref. [1]. We checked that for the
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Table 3. Comparison of mean TKE calculated at different
values of E∗

L/E
∗
H for the indicated fragmentations in sponta-

neous fission of 252Cf. The values of E∗
L/E

∗
H taken from ref. [9]

were obtained with unfolding procedure from the experimental
data.

Fragmentation E∗
L/E

∗
H 〈TKE〉th (MeV)

102Zr + 150Ce AL/AH = 0.68 179.3
1 178.9

105Mo + 147Ba AL/AH = 0.71 190.3
1 190.3

0.2 [9] 190.3
106Mo + 146Ba AL/AH = 0.73 190

1 190
1.38 [9] 192.5

107Mo + 145Ba AL/AH = 0.74 190.7
1 191

0.64 [9] 190.6
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Fig. 9. The ratio of the length λ of the fissioning system at
R = Rb with deformations βL and βH corresponding to the
deepest minimum on the potential energy surface to the length
λ0 of the same system at βL = βH = 1 as a function of the
mass asymmetry for 236U (dashed line) and 240Pu (solid line).

spontaneous fission, neutron-induced fission and photofis-
sion our results are not crucial to the partition of the ex-
citation energy between the fragments at scission point.
In table 3 we illustrate this for several splittings of 252Cf.
If we set ED →∞ in (6) (no damping of the shell correc-
tion), we obtain 〈TKE〉 = 177.4, 193.4, 191.5 and 193.5
MeV for the fissions 252Cf → 102Zr+150Ce, 105Mo+147Ba,
106Mo+146Ba and 107Mo+145Ba, respectively. Therefore,
the dependence of our results on the damping of the shell
corrections and the partition of the excitation between
the fragments is within the inaccuracy of the calculations
and experimental measurements. In the splittings 105Mo+
147Ba and 107Mo + 145Ba of 252Cf the potential energies
at scissions are about 2.5 MeV larger than the potential
energy at scission for the splitting 106Mo+ 146Ba. There-

fore, 106Mo + 146Ba is the most probable fission splitting
of 252Cf for ZL = 42 and ZH = 56 [9]. From the example
presented in table 3 one can see that the value of 〈TKE〉
weakly depends on AL (AH) at fixed ZL (ZH). Therefore,
for each ZL (ZH) the experimental TKE averaged over
various mass fragmentations can be successfully compared
with 〈TKE〉 calculated for the most probable AL (AH).
Figure 9 shows the ratio of the length of the fissioning

system at R = Rb with deformations βL and βH corre-
sponding to the deepest minimum of the potential energy
to the length of the same system with βL = βH = 1 as a
function of the mass asymmetry η = (AH − AL)/(AL +
AH) for the systems

236U and 240Pu. The fission fragments
with the largest yield have smaller relative deformations.
Here, we find η = 0.13 (AH = 134, AL = 102) for

236U and
η = 0.11 (AH = 136, AL = 106) for

240Pu, where this ra-
tio is minimal, in comparison with the largest experimen-
tal yields for η = 0.15–0.19 [3] and 0.13 [5], respectively.

5 Summary

Within an improved scission point model we calculated
the mean TKE of the fission fragments of 232Th, 234,236U,
240Pu, 250,252Cf, 256No and 258Fm. In the most cases the
agreement with the experimental data is quite good. In
comparison to ref. [1], our method allows us to define
strictly the scission configuration for each fission splitting
and each set of deformation parameters and excitation en-
ergies. We can describe the variance of TKE and relative
yield of each mass (charge) splitting. For fixed AL, the
fragmentations are relatively enhanced from the minima
of the potential energy surface as a function of the defor-
mation parameters. This creates the fine structures in the
TKE-mass distribution of fission fragments. Although the
experimentally observed fine structures are rather compli-
cated and are probably not produced by only the defor-
mation effects considered here, the correlation of the cal-
culated and experimental structures supports the possible
explanation of the observed phenomena by the deforma-
tion of the fragments.
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